

Improving the Effective Resolution of Passive Microwave Precipitation Retrieval: Global

and Regional Diagnostics over Land and Oceans

C. Guilloteau¹, E. Foufoula Georgiou¹, C. Kummerow², P. Kirstetter^{3,4} ¹University of California Irvine, ²Colorado State University ³University of Oklahoma, ⁴NOAA National Severe Storms Laboratory

spacing and effective resolution of the final effective resolution product

- grid increment. • While the grid spacing is often referred as the and R_b in the wavelet domain one can consider:
- ability to resolve precipitation patterns at the \bullet The wavelet spectrum of the error field $R_a R_b$. corresponding scale.
- Even if grid spacing generally depends on multisensor products.

• We define the "effective resolution" of a product, as the finest scale at which it is able to correctly reproduce precipitation patterns. The effective resolution does not only depend on the instrumental resolution and shall be systematically assessed.

Introduction: instrumental resolution, grid Wavelet decomposition: a diagnostic tool to properly define the GPROF and KuPR compared to MRMS

The discrete wavelet transform decomposes the precipitation field R(x,y) into a GPM overpasses. Satellite precipitation retrieval products are series of wavelet coefficients $R'_{\lambda,i}$ encoding the variations of R at various generally gridded products with regular or irregular scales. It is an orthogonal decomposition, the wavelet coefficients are not spatially correlated and not correlated across scales. To compare two fields R_a

- "resolution" of the product it does not ensure the The variance of the wavelet coefficients at each scale (wavelet spectrum).

 - The covariance / correlation of the wavelet coefficients R'_a and R'_b at each

instruments' resolution it may also be partially If R_a is evaluated against the reference R_b , the effective resolution of R_a is the arbitrary, in particular for multispectral retrievals and finest scale which for R'_a and R'_b are consistent. Here we use as a criterion $cor^{2}(R'_{a}, R'_{b}) > 0.5$

Comparison with MRMS radar product over continental US in 2015 and 2016. 1675 correlation of the

=> MRMS smoother than KuPR.

=> GPROF closer to MRMS than to KuPR.

Information content of the various GMI channels

Analysis of the joint variations of GMI TBs (19GHz and 89GHz) and KuPR rain rates.

The coarse-scale spatial variations of $TB_{19H-19V}$ are linearly correlated with the spatial variations of R over oceans.

The coarse-scale spatial variations of TB_{89V} are linearly correlated with the spatial variations of R over land, but the correlation decreases fast with scale.

Global comparison of GMI GPROF-2017 retrievals with KuPR fields

Three years of collocated GMI and KuPR observations, March 2014 to February 2017, 16500 GPM orbits.

wavelet coefficients

Global map of the variability of GPROF effective resolution

=> GPROF is a smooth estimate (lacks variance at fine scales).

=> Effective resolution: 10~20km over oceans 40~80km over land.

Conclusions and perspectives:

- GMI GPROF-2017 can better resolve fine-scale precipitation patterns over oceans than over land.
- In spite of their coarser resolution, the low frequency channels of GMI (19H and 19V) which are sensitive to rain drops emission signal seems to contain more information about the fine-scale variability of surface precipitation than the better resolved high-frequency channel (89V).
- Complex ground emissivity makes the interpretation of low frequency channels ambiguous over land. Therefore, over land most of the exploitable information comes from the high frequency channels.
- The high frequency channels are sensitive to ice scattering. Future work will determine down to which scale the ice content of the clouds can accurately predict surface precipitation patterns.

Acknowledgment: This work was supported by the NASA Global Precipitation Measurement Program under grant NNX16AO56G.

References: Guilloteau, C., Foufoula-Georgiou, E., and Kummerow, C. D., 2017: Global multiscale evaluation of satellite passive microwave retrieval of precipitation during the TRMM and GPM eras: effective resolution and regional diagnostics for future algorithm development. *Journal of Hydrometeorology*, doi:10.1175/JHM-D-17-0087.1